HEARTVERIFY: model-based quantitative verification of implantable cardiac pacemakers

Contributors: Benoit Barbot, Alexandru Mereacre, Nicola Paoletti and Andrea Patane

Summary

HEARTVERIFY is a plug-and-play framework for the analysis and verification of pacemaker software and personalised
heart models. Its compatibility with MATLAB Stateflow and extensibility facilitates applications in other domains.

1 Description

Purposes. Cardiac pacemakers are some of the most commonly employed medical devices, with more than one million
new pacemaker implanted each year worldwide. Due to the progressive ageing of the population, their use is estimated
to grow further in the next few years. To prevent software-related errors that in the past have led to patient’s death and
costly device recalls, quantitative formal verification is needed to ensure the safety and reliability of pacemakers. This
is challenging because of the need to capture the probabilistic and non-linear dynamics of the heart and connect it in
closed-loop with the pacemaker. Moreover, we must take into account the specific physiological characteristics of the
patient in order to deliver more effective personalised treatments.

Artifact and benefits. We present HEARTVERIFY, a model-based framework for the analysis and quantitative ver-
ification of heart-pacemaker systems. In HEARTVERIFY, models are specified in MATLAB Stateflow and are analysed
using statistical model checking, a technique for the verification of probabilistic properties based on the sampling of sys-
tem’s trajectories. This makes it suitable also for the complex cardiac dynamics we need to reproduce, for which precise
(numerical) verification methods would fail.

One important feature of HEARTVERIFY is modularity, which allows configuring and testing different heart and pace-
maker models in a plug-and-play fashion, without changing their communication interface or the verification engine. This
feature makes HEARTVERIFY easily extensible. One example is the integration of additional analysis methods, which
we showed in previous work conducted in the VERIWARE and VERIPACE projects [2, 1]: parameter synthesis [7, 9],
hardware-in-the-loop simulation and energy optimisation [6], or biometric authentication [5].

The main features of the framework are described in the Methods section and implemented in a software package®,
through which the user can:

e experiment with multiple heart models, pacemaker designs and verification properties;
e estimate and analyse personalised heart models from electrocardiogram (ECG) data;
e define custom experiments and extend HEARTVERIFY with new models and algorithms.

Furthermore, the popularity of Stateflow for embedded systems and industrial applications makes HEARTVERIFY an
appealing and ready-to-use solution for verification of a large variety of systems, not just from the biomedical domain.

2 Methods

Below we describe the modelling language, the main models and features of the framework, and provide instructions on
how to perform the experiments shipped with the package and extend the framework with new models and experiments.

2.1 Modelling and property specification

Probabilistic Timed I/O Automata. HEARTVERIFY builds on a formal specification language called Timed 1/0
Automata (TIOA) [7, 9], which extends classical timed automata with the following features:

1. Data Variables, i.e. additional real-valued variables that can be updated through resets.
2. Parameters

3. Non-linear guards and resets: guard constraints (determining when an edge is enabled) and resets can involve
generic and non-linear functions of the variables and parameters. This feature extremely extends the expressiveness
of the language, enabling the complex cardiac dynamics we need to reproduce.

L Available at http://www.prismmodelchecker.org/files/Heart VerifyFramework.zip

http://www.prismmodelchecker.org/files/HeartVerifyFramework.zip

2,!Abeat,z; = SA_,
{z1 := 0,a_dV := SA_dV}

SANode after(SA_d), ,
1, ?NextAtrBeat, T, Wait4ABeat |, {a_dV=SA_dV} Wait4ASynch
{$1 = 0}
1, ?NextAtrBeat, T, 1
{z1 = 0}
(a) Timed I/O Automaton (b) Stateflow diagram

Figure 1: Automata for the SA node

4. Probabilistic guards: optionally, probability distributions can be used to determine the delay for an edge to
become enabled. One important application of probabilistic guards is in the personalisation of the heart model,
where distributions allow describing patient’s features without losing statistical information from the data.

Figure la depicts an automaton modelling the sino-atrial node, a component of the heart conduction system. The
automaton contains one clock, x1, one data variable, a_dV, and two parameters SA_d and SA_dV. Locations are Wait4ABeat
(initial) and Wait4ASynch. Digits 1 and 2 denote priorities, which establish an execution order among enabled edges. The
language supports also input and output actions, identified by the prefixes 7 and !, respectively. These enable the
communication between multiple TIOA components in a network.

Encoding into Stateflow. TIOA models can be seamlessly expressed as MATLAB Stateflow diagrams, which are
strictly more expressive than TIOAs. In order to ensure compatibility, the following Stateflow features need to be excluded:
hierarchy; state actions; junctions and multiple actions associated to a single edge. Figure 1b shows the Stateflow encoding
of the previous example.

The verification engine we chose is CoOSMOS [3], a statistical model checker for Generalised Stochastic Petri Nets
(GSPN) and HASL properties (explained below). The tool relies on the generation of optimised C++ code that implements
the simulation, which, combined with the possibility to run on multiple cores, makes verification very efficient. In the
framework, we also integrate a recently developed method for translating TIOAs into GSPNs [4].

HASL (Hybrid Automata Stochastic Language) properties [3] consist of two components:

1. a Linear Hybrid Automaton (LHA) that synchronises with the model and determines whether an execution is
accepted or not.

2. a mathematical expression over the moments of the LHA variables. This is the actual input to the verification.

Figure 2 shows an example LHA for checking whether the number of heart beats in the first minute is in [60,120]. It
contains one initial location, [y, and one accepting location, ;. The three variables, ¢, n and y denote the time, the number
of ventricular beats and the outcome of the property, respectively. n is increased whenever the LHA synchronises with
event Vbeat. F indicates the set of all events in the GSPN 2. Digits 1 and 2 denote priorities. The first expression in
Fig. 2 denotes the satisfaction probability of the property, i.e. the expected value of y at [;. The second expression gives
the variance of the number of beats per second (n/t). HASL also supports more complex expressions, e.g. with integration
of variables over time [3].

2.2 Features

The heart model describes the cardiac electrical conduction system and the propagation of the action potential. Its
structure is depicted in Figure 3, where each conduction node corresponds to a TIOA. Typically, impulses travel from the
atria to the ventricles through the AV node (blue arrows), but can also follow the opposite path (red arrows), e.g. when
the ventricle is paced. The conduction is implemented through synchronisation between the involved components. In this
way, the model can be easily extended with other accessory conduction pathways. The figure also shows the connection
with a dual-chamber pacemaker (grey arrows). Importantly, the model can generate synthetic ECG signals that reflect
the events fired during the execution. The following kinds of heart models are provided in HEARTVERIFY:

2Note that the translation of TIOA actions into GSPN events produces slightly different event names.

2, T,E\ {Vbeat}, T

const double tf=60000; % 1 minute
const double 1b=60;
const double ub=120;

t:=0, 1,t > 60 A VariablesList = {t, n, y};
n:=0, ne [60 120] Ey:=1 LocationsList = {10,11};
y:=0 ’ e AVG(Last (success)); % checked expression

InitialLocations = {10};

FinalLocations = {11};

Locations = {

(10,TRUE, (t:1, n:0, y:0));

(11,TRUE) ;

};

Edges = {

((10,10) ,{Vbeat},#,{n=n+1});

1, T,Vbeat,n :==n + 1 ((10,10) ,ALL\{Vbeat},#,#);

((10,11) ,#,t>=tf & n>=1b & n<=ub,{y=1});
E[LAST (y)] expectation of y at the accepting state ((10,11) ,#,t>=tf,{y=0}) ;

Var[LAST(n/t)] variance of n over t at the accepting state };

Figure 2: Example automaton and expressions for HASL property (left) and corresponding implementation (right).

.| AAVConductor
| @
AVJOut

Figure 3: TIOA components in the heart model. Arrows indicate synchronisations and are labelled with the action name.

Ventricle]qg[VEctopic }

e deterministic;
e probabilistic; and

e probabilistic, with parameters estimated from data.

Personalisation. HEARTVERIFY also supports the estimation of personalised heart parameters from ECG data [5].
The method consists of the following steps:

1. Detection of ECG features (e.g. time between peaks and amplitudes). Some of them are directly mapped to
the heart parameters as discrete probability distributions, enabling model-based generation of the synthetic signal
(Figure 4).

2. Estimation of “hidden” parameters that cannot be directly associated with ECG features. The procedure relies
on machine learning techniques (Gaussian Process optimisation) to minimise the statistical distance between the

—— ECG Signal © Rwave Swave O Twave © Qwave P wave
400
z s
E E 200- B
[()
g g o
Il Il Il L Il Il Il L L = L L L L L I L L L
200 1 2 3 .5 6 7 8 9 10 2005 1 2 3 .5 6 7 8 9 10
Time (s) Time (s)
(a) Processed ECG and detected peaks (b) Synthetic signal

Figure 4: ECG detection and generation of synthetic signal

4 W

Fri
i

S

A

Statistical distance
Statistical distance

/

(a) 10 samples (b) 20 samples (c) 30 samples (d) 40 samples

Figure 5: Optimisation of the statistical distance between data and synthetic signals w.r.t. the parameters to estimate.
The accuracy of the statistical distance function improves with the number of sampled parameters.

1.
Mean Best Synthetic ECG
1k 1 A —— Mean ECG (training set)

o o8¢ o 0.8F 4
g I
S os- 5 oer bl
> > 04
o g T)
3 0.4F 9
S o2f ‘s 0 b
E E o 1
1<} o
S o z

-0.21 -

-0.21
-0.4 bl
-04 ! ; :
— 0 P
Phase (radians) Phase (radians)
(a) (b)

Figure 6: Mean and standard deviation of synthetic ECG (a) and comparison with input data (b).

data and the synthetic ECG produced by the model (Figure 5). Figure 6 shows the good agreement between data
and the synthetic ECG associated with the optimal parameters.

The estimation can be performed using custom ECG recordings or by choosing among the patient records provided with
the software.

Pacemaker models. In our framework we provide two different pacemaker designs:
e DDD: dual-chamber, i.e. it paces and senses both the atrium and the ventricle, and ensures they are synchronised.

e VVIR: rate-adaptive [8], where the pacing rate is continuously adapted according to the demand/activity of the
patient, detected through the processing of the ECG and other physiological sensors. It paces only the ventricle.
We include two models of rate-adaptation (see Figure 7): open-loop, with fixed offline ECG data; and closed-loop,

ECG data

(fixed)
c
ECG data Detection and rate adaptation % Pacing
(fixed) E
" Heart model onl h
nline synthetic |Detection and
(personalised ate adantator’] VVIR model
Heart model Pacing WIR model parameters) ECG data p
(default mode
parameters) Sensing Sensing
(a) Open loop (b) Closed loop

Figure 7: Rate-adaptation models

X=Paced Beats, O=Natural Beats 0.1 T T T T
i - 0.09 | 1
0.08]
€
2 0.07 | 1
<
0.06 i
Z
3 005¢f 1 . 1
[‘
S o004} . . |
& ‘ i
0.03 | i |
o ‘ y
= 0.02 | : : .
c H N
< 0.01 | || II .
0 ;;*i“l Iliii'
0.01
0 5 10 15 20 25 30 40 50 60 70 80 90
Time [s] Number of Paced Beats
(a) Stem Plot of the heart events during one execution of the deter- (b) Probability density function of the number of paced beats using
ministic heart model and the VVIR pacemaker. the probabilistic heart model and the DDD pacemaker.

Figure 8: (a) was obtained with the command:

.\HeartVerify -m VVIR -c default -p stem Properties/wait VVIR.lha

(b) was obtained with the command:

.\HeartVerify -m DDD -s stochastic -c default -p pdf Properties/waitPDF_DDD_stochastic.lha

where the pacemaker detects and adapts its rate from the online synthetic ECG signal. Closed-loop rate-adaptation
is a novel feature of the framework, presented for the first time in this artifact evaluation submission.
Properties. We now illustrate some of the properties that we can analyse and verify with HEARTVERIFY:
e probability of slow heart rate or conduction defects;
e probability of sensor-induced tachycardia, occurring when sensing errors induce an excessive pacing rate;
e debug of single executions (Figure 8a);

e probability density function plots (Figure 8b).

2.3 Using and extending the framework

Package structure We include a version of the CosMOS tool® compiled on Fedora 20 (64-bit) and of the MATLAB
SUMO toolbox? (used for Gaussian Process Optimisation). Binaries, header files and libraries of Cosmos are located
in the directories bin, include and 1ib, respectively. The main directory of the package is HeartVerify, considered
henceforth the working directory. Here, the source code is organized in a modular fashion, as it follows:

e BlendingCode: source code for the rate-adaptive routines. Note that the code is self-contained, i.e. it can be
executed independently of the verification method (a Makefile is provided for ease of compilation), which allows
the user to easily implement e.g. new patient-specific models, pacemaker sensors and ECG processing algorithms.

e ExampleScript: example scripts for model conversion and execution through Cosmos.

e Models: heart and pacemaker models in Stateflow, along with their translation in the .grml format required by
CosMos. All the models can be independently run in MATLAB for testing purposes.

e Properties: HASL formulas in .lha format (Figure 2).

e SynthECG: routines for the estimation of patient-specific parameters. Thanks to the modularity of the code, different
optimisation engines and algorithm can be tested in place of SUMO.

e exbat.cpp: C++ code that can be referred into Stateflow models.

3http://www.lsv.ens-cachan.fr/Software/cosmos/
“http://www.sumo.intec.ugent.be/SUMO

http://www.lsv.ens-cachan.fr/Software/cosmos/
http://www.sumo.intec.ugent.be/SUMO

4)
TIOA/Stateflow

model

_ $model.six Yy,

(C++ code)

(e.g. functions,
parameters,
distributions...)

\ exbat.cpp /

GSPN
model

$model.grml

@ Verification
Results

modelConvert

HASL
prope rty
$prop.lha

Figure 9: Compilation toolchain.

e HeartVerify: command-line interface. Included models, processing routines and properties can be invoked through
this script, using suitable options.

For more detailed information, a Readme file is available in each folder.

Running experiments. We now show some command-line examples for running the experiments included in HEARTVER-
IFY:

./HeartVerify Properties/wait_DDD.lha

executes and plots a single trace using the DDD pacemaker configuration. In this case, the property counts the number
of heart beats in one minute. The only mandatory input of HeartVerify is the HASL property. Option flags can be used
to customise the experiment. For example, the command

./HeartVerify -le data.txt -m VVIR -s synthetic -c default -p stem -d Properties/wait_VVIR.lha

will first learn (-1) heart parameters from the ECG data (-e) in data.txt; use the VVIR pacemaker model (-m) and the
personalised heart model with synthetic ECG generation capabilities (-s synthetic); pass the default options to CosM0S
(-c default); produce a stem plot of the events during one execution (-p stem); and produce intermediate plots and
results for debugging purposes (-d). Help on the supported flags and their usage is accessed through option -h.

Extending with new experiments. We describe the compilation toolchain of HEARTVERIFY (Figure 9), stressing the
parts that can be modified and extended. The modelConvert procedure translate a Stateflow model into a GSPN model,
which can be verified by CosMo0s given an input HASL property. In the translation process, the model is merged with
the external C++ source file exbat.cpp. This allows using custom C++ functions (defined and/or included in the source
file) in the Stateflow model, which enhances the flexibility and the power of the language, as well as the modularity of the
framework, effectively separating the modelling (Stateflow) and the data processing (exbat.cpp) aspects. For example
the same heart/pacemaker model can be tested against different rate-adaptive specifications; or the pacemaker can be
unplugged from the Stateflow model, and the synthetic ECG signal can be used to test hypothesis on patient’s conditions.

Thanks to its compatibility with Stateflow, HEARTVERIFY can be extended in countless directions without requir-
ing any specific knowledge of verification techniques, but just some familiarity with MATLAB/Stateflow and C/C++
programming. Below are some more ideas that can be easily realised:

e Parametric analyses can be implemented through a simple script that repeatedly executes the experiment on different
parameter values. Figure 10 shows an example where we evaluate how heart dynamics is affected by the rate of
sensing noise in the pacemaker.

e CosMos can export GSPN models into the PRISM language, thus enabling precise probabilistic model checking of
Stateflow models.

e Creation of a MATLAB toolbox for HEARTVERIFY, with a GUI that integrates Stateflow with features like graphical
modelling of HASL properties, step-by-step debugging and management of verification experiments.

Probahility

1000

Mumber of Beats

Figure 10: Probability density of the number of heart beats in 10 minutes, under different rates of sensing noise (53).

References

[1] VERIPACE: Design, Analysis and Synthesis Tools for Cardiac Pacemaker Software.
http://qav.cs.ox.ac.uk/projects/veripace/, 2015.

[2] VERIWARE project. Pacemaker Verification. http://www.veriware.org/pacemaker.php, 2015.

[3] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, and N. Pekergin. Hasl: A new approach for performance evaluation
and model checking from concepts to experimentation. Performance FEvaluation, 2015.

[4] B. Barbot, M. Kwiatkowska, A. Mereacre, and N. Paoletti. Building power consumption models from executable timed
i/o automata specifications. Submitted to HSCC 2016, 2015.

[5] B. Barbot, M. Kwiatkowska, A. Mereacre, and N. Paoletti. Estimation and verification of hybrid heart models
for personalised medical and wearable devices. Technical Report CS-RR-15-05, Department of Computer Science,
University of Oxford, 2015.

[6] C. Barker, M. Kwiatkowska, A. Mereacre, N. Paoletti, and A. Patane. Hardware-in-the-loop simulation and energy
optimization of cardiac pacemakers. In 87th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), to appear, 2015.

[7] M. Diciolla, C. H. P. Kim, M. Kwiatkowska, and A. Mereacre. Synthesising optimal timing delays for timed i/o
automata. In Proc. 14th International Conference on Embedded Software (EMSOFT’1/). ACM, 2014.

[8] M. Kwiatkowska, H. Lea-Banks, A. Mereacre, and N. Paoletti. Formal modelling and validation of rate-adaptive
pacemakers. In IEEE International Conference on Healthcare Informatics (ICHI), pages 23-32. IEEE, 2014.

[9] M. Kwiatkowska, A. Mereacre, N. Paoletti, and A. Patane. Synthesising robust and optimal parameters for cardiac
pacemakers using symbolic and evolutionary computation techniques. In Proceedings of the 4th International Workshop
on Hybrid Systems and Biology (HSB 2015). To appear., 2015.

	Description
	Methods
	Modelling and property specification
	Features
	Using and extending the framework

