Osteoporosis: a multiscale modeling viewpoint

Nicola Paoletti
School of Science and Technology, Computer Science
University of Camerino
Camerino, IT
nicola.paoletti@unicam.it

Pietro Liò
Computer Laboratory
University of Cambridge
Cambridge, UK
pl219@cam.ac.uk

Emanuela Merelli
School of Science and Technology, Computer Science
University of Camerino
Camerino, IT
emanuela.merelli@unicam.it

Marco Viceconti
Laboratorio di Tecnologia Medica
Istituto Ortopedico Rizzoli
Bologna, IT
viceconti@tecnio.ior.it

ABSTRACT
Our work focuses on bone remodeling with a multiscale breadth that ranges from modeling intracellular and intercellular RANK/RANKL signaling to tissue dynamics. Several important findings provide clear evidences of the multiscale properties of bone formation and of the links between RANK/RANKL and bone density in health and disease conditions. Recent studies indicate that the circulating levels of OPG and RANKL are inversely related to bone turnover and bone mineral density (BMD) and contribute to the development of osteoporosis in postmenopausal women, and thalassemia-induced osteoporosis. We make use of a spatial process algebra, the Shape Calculus, to control stochastic cell agents that are continuously remodeling the bone. We found that our description is effective for such a multiscale, multilevel process and that RANKL signaling small dynamic concentration defects are greatly amplified by the continuous alternation of absorption and formation resulting in large structural bone defects.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Validation and Analysis, Model Development; J.3 [Life and Medical Sciences]: Biology and genetics, Health

Keywords
osteoporosis, multiscale, shape calculus, bone remodeling, agent-based simulation

1. INTRODUCTION
Human cells have striking characteristics; their number of in the human body is thought to be close to 10^{14}, more than 1000 times the number of stars in the milky way. Instead the number of cell types is relatively small, about 200 but their diversity is remarkable large which explains the diversity of tissues and organs. One of the most important cell types are those in the skeleton affecting the bone mineral density (BMD). The BMD used as a predictor of fracture, is a summation of the remodeling that occurs during growth and aging on the periosteal and endosteal (endocortical, intracortical, trabecular) surfaces of bone.

An important factor affecting bone metabolism is RANK/RANKL/OPG signaling. RANK is a protein expressed by osteoclasts, the cells responsible for bone resorption. RANK is a receptor for RANKL, a protein produced by osteoblasts, the cells responsible for bone formation. RANK/RANKL binding induces osteoclast differentiation, proliferation and activation, thus it prominently affects the resorption phase during bone remodeling. Osteoprotegerin (OPG) is a decoy receptor for RANKL. It is expressed by mature osteoblasts and it binds with RANKL, thus inhibiting the production of osteoclasts. Several important findings provide clear evidences of the multiscale properties of bone formation and of the links between RANK/RANKL and bone density in health and disease conditions. There is a lack of knowledge on the genetic and environmental factors responsible for age, gender specific differences in bone fragility and fracture rates. Recent studies indicate that the circulating levels of OPG and RANKL are inversely related to bone turnover and BMD and contribute to the development of osteoporosis in postmenopausal women [18], and thalassemia-induced osteoporosis [26].

This paper focuses on bone remodeling and has a multiscale breadth that ranges from modeling intracellular and intercellular RANK/RANKL signaling to tissue dynamics. With respect to our previous work [23], we simulate and compare healthy and pathological conditions, demonstrating that small changes in RANKL concentration lead to osteoporosis, especially when aging factors are involved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

CMSB ’11, September 21-23, 2011 Paris, FR
Copyright 2011 ACM 978-1-4503-0817-5/11/09 ...$10.00.
We make use of a multilevel approach combining a high-level process-algebraic specification in the Shape Calculus, and a low-level stochastic agent-based simulation. The Shape Calculus provides the actual methodology to formally describe processes (cells) moving and interacting in the space (portion of bone tissue). On the other hand, the agent-based model represents the concretisation of the process-algebraic specification, and it is equipped with additional features such as *stochasticity* and *perception*. Although these features could have been added also at the specification level, we preferred to introduce them only at the implementation level. The reason is that we employ the Shape Calculus as a high-level specification language, which should be kept more generic as possible in order to be suitable for describing a large variety of biological and physical systems. Hence stochasticity and perception become significant and useful during the simulation of the model, not in its description.

Apart from the methodological novelties, the main contributions of this work are: a) a process-algebraic formulation and a runnable agent-based model for bone remodeling; b) the assessment of pathological conditions, by analyzing the results of the simulation.

The paper is organized as follows. Section 2 introduces the process of bone remodeling. In Section 3 we present the high-level specification of bone remodeling in the language of the Shape Calculus. In Section 4 we describe the stochastic agent-based simulator. In Section 5, we analyze the results of the simulation, considering healthy and osteoporotic scenarios. Finally, in Section 6 we compare our approach with other mathematical and computational methods used in bone remodeling, and we discuss future works.

2. Mechanics of Bone Remodeling

There are two main types of bone: 1) Compact tissue forms the outer shell of bones. It consists of a very hard (virtually solid) mass of bony tissue arranged in concentric layers (Haversian systems); 2) Cancellous (also known as “spongy”) tissue is located beneath the compact bone and consists of a meshwork of bony bars (trabeculae) with many interconnecting spaces containing bone marrow. In the process of bone remodeling (BR), old bone is continuously replaced by new tissue [24]; this ensures that the mechanical integrity of the bone is maintained and, in healthy conditions, there are no global changes in the morphology. However, pathological conditions can alter the equilibrium between bone resorption and bone formation; osteoporosis is an example of negative remodeling: the resorption process prevails on the formation one and this reduces bone density, so increasing the risk of spontaneous fractures. Hence, the definition of faithful models for BR has a high social and clinical relevance in the prediction of bone diseases [14]. The bone remodeling process is conducted by osteoclasts and osteoblasts, forming Basic Multi-cellular Units (BMUs). Osteoclasts follow osteoclasts in a highly coordinated manner indicates that a coupled regulative mechanism must exist. It was suggested [20] that BMU activity is controlled by osteocytes in the bone matrix, serving as mechanosensors, sending signals through the osteocytic canalicular network to the BMU cells. Each BMU has a finite lifetime, so new units are continuously forming as old units are finishing [20].

In normal bone, the number of BMUs, the bone resorption rate, and the bone formation rate are all relatively constant [32]; while the key events during the BR could be summarised as below:

- the RANKL/RANK signaling regulates osteoclast formation, activation and survival in normal bone modeling and remodeling and in a variety of pathologic conditions characterized by increased bone turnover. OPG protects bone from excessive resorption by binding to RANKL and preventing it from binding to RANK. The relative concentration of RANKL in bone is a major determinant of bone mass and strength [16].
- the pre-osteoclasts circulate in the blood vessels if a new crack appears, the osteocytes near the crack undergo apoptosis osteocytes detect strain.
- the pre-osteoclasts start to express RANKL on their surfaces. Pre-osteoclasts have RANK receptors on their surfaces.
- the lining cells around the bone pull away from the bone matrix and form a canopy which merges with the blood vessels.
- the pre-osteoclasts enlarge and fuse into mature osteoclasts
- in cortical BMUs, osteoclasts excavate cylindrical tunnels in the predominant loading direction of the bone. They are followed by osteoblasts, filling the tunnel, creating secondary osteons of renewed tissue.
- the trabecular bone remodeling is mainly a surface event, in which osteoclasts dig a trench rather than a tunnel.

3. Bone Remodeling in the Shape Calculus

In this section we provide a brief introduction to the Shape Calculus, a bio-inspired spatial process calculus for describing 3D processes moving, colliding and interacting in a 3D space.

In few words, a 3D process is characterized by an *internal behavior* specified in a timed variant of CCS (Calculus of Communicating Systems) [25]; and by a so-called *3D shape*, defining the geometry and the physical properties of the process. In Table 3, the syntax of the calculus is presented.

The set S of 3D shapes is composed of basic shapes s, defined as a tuple $s = (V, m, p, v)$ (geometry, mass, position, velocity); and by compound shapes of the form $S_1 \times S_2$, resulting from the binding of two 3D shapes S_1 and S_2 on a common surface X. Shapes move according to their velocities that are determined by a general motion law - for instance as in a force field or Brownian motion - and by the collisions occurring among shapes.

The internal *behavior* of a 3D process supports a *bind action*, with which processes can bind together forming a compound new process; and *split actions* for breaking bonds. The binding between 3D processes is modeled in a similar way to CCS communication on complementary channels; in the Shape Calculus, channels act as binding sites and are of the form $\langle \alpha, X \rangle$, where α is a channel name,
and X is the active surface. The set of channels is denoted by C. Binding can occur only when two channels $c_1 = \langle \alpha, X \rangle$ and $c_2 = \langle \beta, Y \rangle$ are compatible (written $c_1 \sim c_2$), namely if $\alpha = \beta$ (complementary channels name), and $X \cap Y \neq \emptyset$ (they share a common surface of contact). In addition, the Shape Calculus supports two basic actions for splitting an established bond: the weak-split $\omega(\alpha, X)$ (not-urgent, can be postponed) and the strong-split $\rho(\alpha, X)$ (urgent, must be performed as soon as it is enabled). We denote the sets of weak-split actions and strong-split actions with $\omega(C) = \{\omega(\alpha, X) | \langle \alpha, X \rangle \in C\}$, and $\rho(C) = \{\rho(\alpha, X) | \langle \alpha, X \rangle \in C\}$, respectively.

The set $3DP$ of 3D processes is composed of basic processes of the form $S[B]$, which are characterized by a behavior $B \in B$ encapsulated in a 3D shape $S \in S$; and by composed processes $P_i(a, X) P_i$, where $P_i, P_j \in 3DP$, a is the name of the two compatible channels, and X is the surface of contact.

Finally, we define a network of 3D processes (3D network, for short) as the parallel composition of zero or more 3D processes. Given a finite set of indexes $I = \{1, \ldots, n\}$, we can alternatively write $(\| P_i \|)_{i \in I}$ or $(\| P_i \|)_{i=1}^n$, with $P_i \in 3DP$, to denote the network that consists of all P_i with $i \in I$: $P_1 \| \ldots \| P_n$.

Table 1 and Table 3 show the Structural Operational Semantics (SOS) [29] rules for the B-terms of the Shape Calculus. We refer the interested reader to papers [2, 3] for the complete semantics and for a broader view of the calculus.

Figure 1 depicts a possible evolution of the 3D network $B_0 \| P_1$, where $P_0 \overset{\text{def}}{=} S_0[B_0]$ and $P_1 \overset{\text{def}}{=} S_1[B_1]$. In the initial configuration P_0 can perform an input bind action on $\langle \alpha, X \rangle$ (the green area of P_0), and P_1 can perform an output bind action on $\langle \beta, Y \rangle$ (the pink part of P_1); formally, $S_0[B_0] \overset{\alpha, X}{\rightarrow} S_0[B_0]$ and $S_1[B_1] \overset{\beta, Y}{\rightarrow} S_1[B_1]$. If a collision between P_0 and P_1 brings the surfaces X and Y in contact, i.e. $X \cap Y = Z \neq \emptyset$, the channels $\langle \alpha, X \rangle$ and $\langle \beta, Y \rangle$ become compatible. Consequently, the two processes bind together, and the resulting compound process is denoted with $S_0[B_0] \langle a, Z \rangle S_1[B_1]$ (Fig. 1 (b)). Finally, Figure 1 (c) illustrates the 3D network after the composed process has split, supposing that $B_0 \overset{\text{def}}{=} B_0^\alpha$, and B_1^β, B_1^γ, that is, they can perform a strong split action on the previously established bond.

3.1 Formal specification of bone remodeling

In this work we enriched the current theory of the Shape Calculus with some new features, which are both inspired by biological evidence and driven by more pragmatical needs.

Table 1: Shape Calculus syntax

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>S : $= \sigma$</td>
<td>$\sigma = (V, m, p, v)$ Basic shape</td>
</tr>
<tr>
<td>$S \langle X \rangle S$</td>
<td>Composed shape</td>
</tr>
</tbody>
</table>
| B : $= \begin{array}{l} \text{Behavior (B-term)} \\
\langle \alpha, X \rangle, B \quad \text{Null behavior} \\
\omega(\alpha, X), B \quad \text{Weak split} \\
\rho(L), B \quad \text{Strong split} \\
\epsilon(t), B \quad \text{Delay} \\
K \quad \text{Process name} \end{array}$ |
| P : $= \begin{array}{l} \text{3D process (3DP-term)} \\
S[B] \quad \text{Composed 3D process} \\
\langle P_i(a, X) P_j \rangle \quad \text{Parallel 3D processes} \end{array}$ |
| N : $= \begin{array}{l} \text{3D network (N-term)} \\
\text{nil} \quad \text{Empty network} \\
P \quad \text{3DP processes} \\
N \parallel N \quad \text{Parallel 3D processes} \end{array}$ |

Table 2: SOS rules for temporal behavior of a shape

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Nil} \leadsto \text{nil}$</td>
<td>$\rho(L), B \overset{t}{\rightarrow} \rho(L), B$</td>
</tr>
<tr>
<td>$\text{Prefer} \quad \mu \in C \cup \omega(C)$</td>
<td>$B \overset{t}{\rightarrow} B'$</td>
</tr>
<tr>
<td>$\text{Sum} \quad B_1 \overset{\mu}{\rightarrow} B_2$</td>
<td>$B_1 + B_2 \overset{t}{\rightarrow} B_1' + B_2'$</td>
</tr>
<tr>
<td>$\text{Del} \quad t' \geq t$</td>
<td>$B \overset{t'}{\rightarrow} B'$</td>
</tr>
<tr>
<td>$\text{Def} \quad B \overset{t}{\rightarrow} B'$</td>
<td>$K \overset{t}{\rightarrow} K'$ if $K \overset{t}{\rightarrow} B'$</td>
</tr>
</tbody>
</table>

Table 3: SOS rules for the functional behavior of a shape

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Prefer} \quad \mu \in C \cup \omega(C)$</td>
<td>$B \overset{t}{\rightarrow} B'$</td>
</tr>
<tr>
<td>$\text{Sum} \quad B_1 \overset{\mu}{\rightarrow} B_2$</td>
<td>$B_1 + B_2 \overset{t}{\rightarrow} B_2'$</td>
</tr>
<tr>
<td>$\text{Def} \quad B \overset{t}{\rightarrow} B'$</td>
<td>$K \overset{t}{\rightarrow} B'$ if $K \overset{t}{\rightarrow} B'$</td>
</tr>
</tbody>
</table>

Figure 1: A possible evolution of the 3D network $S_0[B_0] \| S_1[B_1]$
behavior of Table 4. In Table 6, the high-level Shape Calculus specifica-

Table 4: SOS rules for the temporal and functional behavior of \(\Theta \) and \(\delta \) terms.

\[(B)^k \quad \text{Iteration:} \quad \text{a syntactical construct for expressing behaviors repeating for a finite or infinite number of iterations. Given } B \in \mathbb{B}, (B)^k \text{ is defined by the following:}
\]

\[
(B)^k \equiv \begin{cases} B & \text{if } k = \infty \\ B ; (B)^{k-1} & \text{if } k > 0, k \in \mathbb{N} \\ \text{nil} & \text{if } k = 0, k \in \mathbb{N} \end{cases}
\]

If \(B \) is an atomic term, we allow the notation \(B^k \) without parenthesis.

\(\Theta \) Thanatos: in classical process algebras, a process terminates when it reaches a state where no further actions are possible; in the Shape Calculus, the behavior of a 3D process is enclosed in a formal shape which keeps existing, moving and (elastically) colliding even if its internal behavior reaches the termination state nil. From the necessity to describe phenomena like necrosis and apoptosis that are very common in cellular biology, especially in our model of the BMU, we defined a new behavioral term \(\Theta \in \mathbb{B} \) (thanatos, a greek word for death), which is responsible for the “termination” of a 3D shape. Consider a process \(P \xrightarrow{S[B]} \), where \(S = \langle V, m, p, v \rangle \). Assuming that the transition \(B \xrightarrow{\alpha} B' \) is fired, \(S \) is replaced by the shape \(S' = \langle \{p\}, 0, p, 0, 0, 0 \rangle \), and all the bonds with other 3D processes are broken. In other words, \(S' \) is a sort of void shape, since it has null velocity and mass, and the set of its points \(V \) is only composed by the center \(p \). Consequently, the death of a 3D process is modeled with the sequence \(\Theta \text{nil} \).

\(\delta(t, B) \) Behavior duration: in order to properly express the fact that a behavior must be executed for a specific time interval (e.g. an osteoclast continuously mineralizes bone until its life time has passed), we introduced a new term \(\delta(t, B) \in \mathbb{B} \), which models a time-bounded behavior. It is substantially different from the prefixing delay action \(\varepsilon(t) B \): while \(t > 0 \), \(\delta(t, B) \equiv B \); once \(t = 0 \), \(\delta(t, B) \equiv \text{nil} \).

The operational semantics of \(\Theta \) and \(\delta(t, B) \) is illustrated in Table 4. In Table 6, the high-level Shape Calculus specifi-
Table 6: Biological description and Shape Calculus specification

<table>
<thead>
<tr>
<th>Tissue, BMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue $\defeq (|\text{ABMU}_i|^{r_i} \parallel (|\text{QBMU}_j|^{y_j}))$</td>
</tr>
<tr>
<td>ABMU $\defeq (|\text{Ob}_i|^{\alpha_i} \parallel (|\text{Oc}_j|^{\beta_j}) \parallel (|\text{Ob}_k|^{\gamma_k}))$</td>
</tr>
<tr>
<td>QBMU $\defeq (|\text{Ob}_i|^{\alpha_i})$</td>
</tr>
</tbody>
</table>

Bone tissue is structured in active BMUs (ABMU) participating in the remodeling process, and in quiescent BMUs (QBMU). Each active BMU is in turn composed by n_{Ob} osteocytes, n_{Oc} osteoclasts and n_{Ob} osteoblasts. An inactive BMU is modeled as a network of only osteocytes.

Osteocyte

$O_B \defeq S_{Ob}[\text{Ob}]$

An osteocyte can bind with other k_{Ob} osteocytes through the channel (can, \cdot) and form the network of canaliculi. Along a micro-fracture, they are not near enough to communicate with each other; hence, they expose channel $(\text{consume}, \cdot)$ which will activate the resorption phase. After having performed a bind on $(\text{consume}, \cdot)$, the osteocyte dies since it has been destroyed by the attached osteoclast (Fig. 2 (a)).

Osteoclast

$Oc \defeq S_{Oc}[\text{Ob}_o]$

During its lifetime t_{Ob}, an osteoclast continuously binds with osteocytes on channel $(\text{consume}, \cdot)$ and resorb bone (Fig. 2 (a)). Before dying, it releases biochemical signals in order to attract osteoclasts to reconstruct that consumed part of bone. In particular, a single "dead" osteoclast can bind with k_{Ob} $= n_{Ob}/n_{Ob}$ osteoblasts, so fitting the ratio between active osteoclasts and active osteoblasts.

Osteoblast

$Ob \defeq S_{Ob}[\text{Ob}_o]$

An osteoblast initially behaves as a non-differentiated cell: it produces RANKL, by exposing channel (rank, \cdot). After the effect of OPG-inhibition or after its differentiation time t_{Ob} has elapsed, it starts behaving as a mature osteoblast which produces OPG. In particular, an osteoclast can inhibit a single precursor, by binding on the channel (rank, \cdot) (Fig. 2 (b)). Then, the formation phase lasts a time t_{Ob}, after which the cell undergoes apoptosis.

Stochasticity.

Following the approach in [12, 17], actions performed by the agents are equipped with stochastic rates and weights. In particular, output actions are annotated with a rate $\lambda \in \mathbb{R}^+$, characterizing a random variable with a negative exponential distribution, modeling the duration of the action. Input actions have a weight $\omega \in \mathbb{N}^+$ (not to be confused with the weak-split action of the Shape Calculus), representing the probability that the specific input is selected when a compatible output action is fired.

This stochastic framework characterized by a two-party synchronization and by passive input actions has been preferred to multi-party synchronization, since in the cellular setting we typically have cells emitting a signal (active output action) and receptor cells (passive input action). Consider the system in Figure 3, where two agents A and B are illustrated. Agent A can perform an output action π with rate λ; while B can perform the input actions (a, ω_1) and (a, ω_2). The relative selection probability of (a, ω) is calculated as the rate between ω and the total weight of a, that is the sum of the weights of all the enabled a-actions; in this example,

$$p(a, \omega) = \frac{\omega_i}{\omega_1 + \omega_2}, \quad i = 1, 2$$

Then, the synchronization rate between the actions (a, ω_1) and $(\pi, \lambda A)$ is given by $\lambda \cdot p(a, \omega_1)$. Distance sensibility.

A fundamental property of agent-based models is the perception of the neighborhood. We embedded this feature in our simulator by allowing compatible agents to bind at distance. This method slightly differs from the theory of the Shape Calculus where binding between two 3D processes can exclusively occur when they share a common surface of contact. More precisely, output bind actions are annotated with a parameter $d \in \mathbb{R}^+$ called sensibility distance, meaning that if an agent A can perform an action $(\pi, \lambda A)$, it can bind with any agent B which can perform a compatible action (a, ω) and which is distant from A at most d. In other words, it must hold that $d(A, B) = |p(A) - p(B)| \leq d$, where $p(A)$ (p(B)) is the position of agent A (B) in the 3D space. Figure 4 shows a context where an agent A is able to execute an
output bind action \((\pi, \lambda)_A \). Even if \(C \) exposes a complementary channel, it is out of the perception radius of \(A \), which can consequently bind only with agent \(B \).

It is reasonable to expect that the actual distance between two agents affects their synchronization rate, since longer distances should lead to longer action durations. Therefore, we define the binding rate between two compatible bind actions \((\pi, \lambda)_A\) and \((\alpha, \omega)_B\) exposed by agents \(A \) and \(B \) respectively, by the ratio

\[
\frac{\lambda \cdot p(\alpha, \omega)}{d(A, B)}
\]

The evolution of the system in our simulator is governed by a race condition: non-determinism is resolved by choosing among all the enabled actions the one with the highest rate. Depending on the type of action considered, i.e. an internal action, a synchronization (e.g. a split), or a binding, the mentioned rate would be a \(\lambda \in \mathbb{R}^+ \), the synchronization rate, or the binding rate, respectively.

The simulator for the BMU model is based on the Repast Symphony Suite \[27\], a Java-based environment for the specification and simulation of multi-agent systems. In particular, we have developed a library which allows the specification of Repast agents in a Shape Calculus-like syntax, as illustrated in Table 7. Thus, starting from the formal model, the user can define the different agents in the context in a straightforward way; the only concern is setting motion laws and extending the default classes, if necessary.

In the following we provide some details on the various components of the agent-based model and on its parameters (see Table 8). We will not focus on the stochastic rates and the weights of the actions, because we consider other sources of variability affecting the number of cells, their motion and their lifetime.

Spatial domain. We consider two different spatial domains, or projections: a continuous space and a discrete space, i.e. a grid. Space is approximated in two-dimensions, and has a size of \(240 \times 160 \times 10^{-4} \text{ mm}^3 \) (each cell in the grid models a portion of size \(0.01 \times 0.01 \text{ mm}^2 \)). According to the parameter \(\text{sizeBMU} \) in Table 8, we can ignore the depth of the BMU (\(0.01 \text{ mm} \)) which is much smaller than its width (\(2.4 \text{ mm} \)) and its height (\(1.6 \text{ mm} \)). Including these projections has a two-fold utility: the continuous space allows to simulate fluid and realistic movements of the agents; on the other hand, the discretization of the space reduces the costs in computing the agent’s neighborhood and its binding surfaces.

Time domain. As described in the theory of the Shape Calculus \[3, 2\], the time-line is divided in small segments of duration \(\Delta \in \mathbb{R}^+ \), called movement time step. After each \(\Delta \) the velocities and the positions of all the shapes are updated, according to their particular motion law. For a matter of performances, those actions affecting the velocity and the positioning of shapes (e.g. bind and split actions) does not break the time-line before \(\Delta \) has passed, differently from the Shape Calculus. Moreover in this setting, actions have an exponentially distributed duration. The scheduling policy for those actions is shown in Algorithm 1. In few words, if an action has a duration less than or equals to \(\Delta \), it is performed at \(\Delta \); otherwise, it is postponed to the subsequent time step. Given that a single remodeling cycle lasts about one year and the resorption and formation processes can take months, in this model \(\Delta \) is set to 1 day.

Bone tissue. It is modeled as a real-valued matrix \text{Bone}. The value of a cell \text{Bone}_{ij} represents the percentage bone density at the position \((i, j)\) of the BMU grid, and varies from 0 (void) to 1 (fully mineralized).
Algorithm 1 Algorithm for scheduling stochastic actions and updating the time-line.

\[
t \leftarrow 0
\]

\[
L = \{l_0, \ldots, l_n\} \text{ be a list of } (a, X), (action, duration), \text{ in ascending order w.r.t. durations}
\]

while \(t \leq t_{\text{max}} \) do

\[
\text{Calculate all the } (a, X)\text{-couples to execute and add them to } L, \text{ s.t. } (a, X) \text{ does not involve an agent already having an action in } L
\]

\[
\text{while } L \neq \emptyset \land ((a, X) \not\leftrightarrow l_0) \leq \Delta \text{ do}
\]

\[
\text{execute } a
\]

\[
L \leftarrow L \setminus \{l_0\}
\]

end while

\[
i \leftarrow 0
\]

while \(i, l \in L \) do

\[
(a, X) \leftarrow l_i
\]

\[
L \leftarrow L \setminus \{l_i\} \cup \{(a, X - \Delta)\}
\]

\[
i \leftarrow i + 1
\]

end while

update velocities and positions

\[
t \leftarrow t + \Delta
\]

end while

Osteocytes. We assume that osteocytes are located nearby the micro-fracture, and produce RANKL in order to attract osteoclasts to the portion of bone to repair.

Osteoclasts. In normal conditions, the number of osteoclasts in the BMU is subject to little variation from the average \(n_{\text{Oc}} = 20 \). Higher perceived densities of RANKL in the environment, which are caused by an inflammation or a signaling defect, lead to a higher production of osteoclasts. Their motion law is the combination of a random walk and of the RANKL attraction. The expected lifetime \(t_{\text{Oc}} \) is 10 days, but they can undergo apoptosis before \(t_{\text{Oc}} \) if a high concentration of osteoblasts is detected in the neighborhood. Once reached the portion of bone to consume, an osteoclast reduces the percentage density in that part of bone of \(k_{\text{Oc}} = 2.5 \) each day.

Osteoblasts. The number of osteoblasts in the system varies randomly with an average \(n_{\text{Ob}} = 2000 \). Similarly to osteoclasts, the motion of osteoblasts is regulated by random movements and by attraction factors; in particular, they are directed towards the nearest point to mineralize. Moreover, osteoblast precursors emit RANKL which contributes to osteoclasts’ production and stimulation. Mature osteoblasts inhibit this RANKL signaling with the production of OPG. The lifetime of an osteoblast is about 20 days: 5 days as a precursor, 15 days as a mature cell active in the formation process. When active, it increases the bone density of a factor \(k_{\text{Ob}} = 0.25 \) each day. It can die before its lifetime has passed, if the number of active osteoclasts in the system is higher than expected. Finally, we assume that osteoblasts are recruited only after that the concentration of osteocytes’ RANKL goes below a fixed threshold.

RANKL. At the simulation level, RANKL is not merely a channel exposed by osteocytes or osteoclasts. In fact, those signals produce in a combined way a scalar field modeling the concentration of RANKL in the BMU. It is such that osteoclasts’ movement is determined by the gradient of that scalar field. Hence at the specification level, signals are modeled as communication channels. At the implementation level, output channels are assumed to produce signals which diffuse in the space and attract agents exposing compatible input channels.

A prototype of the simulator is available in the form of a Repast project at \(\text{http://cosy.cs.unicam.it/ubiolab/BR.zip} \).

5. RESULTS

The aim of this work is to show how apparently insignificant changes in RANKL signaling lead to disease conditions, especially when aging factors are involved. In particular, we defined two configurations by varying the parameters \(k_{\text{RANKL}} \) and \(k_{\text{age}} \) (see Table 8):

- **healthy conf.** \((k_{\text{RANKL}} = 1, k_{\text{age}} = 1) \), where RANKL production and cellular activity is normal;
- **osteoporotic conf.** \((k_{\text{RANKL}} = 2, k_{\text{age}} = 2) \), with an overproduction of RANKL and a reduced cellular activity.

When running the osteoporotic configuration, higher values of RANKL induce a higher production of osteoclasts, hence to a higher resorption activity. The aging factor is responsible for a reduced osteoblastic activity which is not sufficient to completely repair the consumed part of bone. This causes a lower total bone density, weaker trabeculae and consequently more frequent and more consistent micro-fractures in osteoporotic patients.

It is worth noticing that when the aging factor is absent (e.g. in a young patient), an overproduction of RANKL don’t determine a disease situation; an unexpected high resorption activity can be easily balanced by increasing the number of osteoblasts and their formation rate, which is not possible in
an old patient. Conversely, with a regular RANKL signaling, weaker osteoclasts are balanced by weaker osteoblasts; hence, even older patients are not subject to relevant negative remodeling phenomena.

Figure 6 illustrates the snapshots taken during the simulation of the two configurations, at time:

$t = 130$: osteoclasts (yellow spheres) are nearby osteocytes (blue) along the micro-fracture, and consume bone surface, forming the black cavities visible in the second row. The first osteoblasts (red spheres) are recruited and start mineralizing cavities on the left part of the micro-fracture. In this phase, RANKL production is at its maximum, because of the combined signaling of osteocytes and pre-osteoblasts in the BMU. Note that while the bone density is approximately the same between the healthy and the osteoporotic configurations, the RANKL concentration is much higher in the second case.

$t = 350$: the remodeling cycle is in its final days. Differences in the bone density are quite prominent: in Figure 6 (f) the damage has almost been repaired; while Figure 6 (h) shows how the reduced osteoblastic activity generates several zones with a lower bone density. In addition, since the number of osteocytes and pre-osteoblasts in the BMU decreases, we notice a minor RANKL production.

Figure 7 shows the average cumulative values of bone resorption and formation for the healthy configuration (Fig. 7 (a)), and for the osteoporotic configuration (Fig. 7 (b)). In Fig. 8 (a) and (b), we compared the values of the percentage bone density obtained by running the two configurations.

6. DISCUSSION AND CONCLUSION

In this paper, we provided a modeling framework consisting of a process-algebraic specification layer and a agent-based implementation layer for describing the process of bone remodeling. The formal specification in the language of the Shape Calculus follows the almost unexplored paradigm of processes as cells and takes into account also spatial and physical aspects, which prominently affect the dynamics of bone remodeling and more generally, of any biological system, from the molecular scale to the tissue scale.

A large variety of computational formalisms equipped with spatial capabilities have been proposed so far (see [4] for an exhaustive review), such as rewrite systems [31, 15, 1, 11], and cellular automata [9]. In the field of process algebras, compartmentalization is a common way to represent process localization [10, 33, 30, 7]; recent works address the problem of expressing also more complex spatial features [8, 19, 35, 3], by enriching the classical notion of process with physical information, position and movement in discrete or continuous coordinate systems, geometry and geometrical transformations.

Besides the good expressiveness of spatial properties, the novelty of the proposed methodology with respect to the above-cited formalisms is the connection between the high-level formulation in the Shape Calculus with the low-level stochastic agent-based simulation in Repast: 3D networks are “implemented” as multi-agent systems in a natural and extensible way.

Furthermore, the formal modeling of bone remodeling is a challenging field of research, since the actual knowledge of

Figure 6: Simulation of healthy (H) and osteoporotic (O) configurations. The first row displays the position of the agents (the cells) in the context (the BMU); pictures in the second row represent the bone density; the third row illustrates the RANKL concentration in the environment. The spatial domain is determined by the extent of the BMU ($2.4 \times 1.6 \text{mm}^2$).
Figure 7: Cumulative bone activity. The top graph shows that in healthy conditions the formation phase (green line) compensate the resorption one (red line). On the other hand, in the disease scenario formation is not effective enough, even if the resorption activity is not greater than in the healthy case. This is attributable to the combination of aging factors leading to reduced resorption and formation rates, and an overproduction of RANKL which attracts a higher number of osteoclasts in the BMU.

Figure 8: Comparison of the results of healthy and osteoporotic configurations. Top graph displays the bone density values during a single remodeling cycle. In normal conditions, at the end of remodeling the initial bone density is reestablished. In the case of osteoporosis, the minimal values of percentage density are reached during resorption, and the final density is lower than the initial one. The bottom graph compares the normal distributions obtained from the results of twenty simulations.
this process at cellular level has still several obscure points. Whereas the most important current efforts in bone remodeling are based on continuous mathematics (recently reviewed in [28]), primarily ODE and PDE, our individual-based model rely on a theoretically formal framework and results more biologically sound, since it combines the discrete and stochastic evolution of cells with a three-dimensional continuous spatial domain. We report that our simulation is time-consistent with the real biology that we know and that the results obtained agree with previous well-established literature, in particular with [21] (ODE model) and with [34] (PDE model). In addition, we succeeded in reproducing the homeostatic nature of bone remodeling by running a “healthy” configuration, as well as simulating bone diseases like osteoporosis, by running a “sick” configuration characterized by a RANKL signaling defect and by aging factors. There are other recent attempts worth being mentioned [22, 6, 5] in which computational formalisms are employed to describe bone remodeling. Despite the convincing results achieved, this is only the starting point of our research project, and we are planning to extend our work in several future directions. We intend to enrich the biological model by incorporating details of the intracellular pathway network, and of biomechanical aspects in bone tissue. Then, a great challenge would be using our simulator to test the effects of experimental drugs, or to simulate how the organism responds to the implant of artificial bone tissue. Another avenue for future research is verifying properties related to bone density and bone pathologies through a model checking that we know the conditions of the system that could be identified through medical investigations, we aim to answer questions such as “How long, from the a current state, will the system take to repair a fracture?” or “Which is the probability that the system will reach a state where the bone density is below a critical threshold?”

Acknowledgment

Pietro Liò thanks RECOGNITION: Relevance and cognition for self-awareness in a content-centric Internet (257756), which is funded by the European Commission within the 7th Framework Programme (FP7).

7. REFERENCES

